A: (, 1.0)
B: (, 0.0)
C: (-3.000, 1.000, 1.0)
D: (1.000, 1.000, 0.0)
Rotation: 0.000\(^{\circ}\)
Scale: (1.0, 1.0)
Translation: (0.0, 0.0, 1.0)
In this demo, you can play with three separate transforms along with the order in which they are multiplied together.
\[ \textbf{S}=\begin{bmatrix}1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0\end{bmatrix} =\begin{bmatrix}\textbf{S}_\textbf{x} \\ \textbf{S}_\textbf{y} \\ \textbf{S}_\textbf{T}\end{bmatrix} \] \[ \textbf{R}=\begin{bmatrix}1.000 & 0.000 & 0.0 \\ 0.000 & 1.000 & 0.0 \\ 0.0 & 0.0 & 1.0\end{bmatrix} =\begin{bmatrix}\textbf{R}_\textbf{x} \\ \textbf{R}_\textbf{y} \\ \textbf{R}_\textbf{T}\end{bmatrix} \] \[ \textbf{T}=\begin{bmatrix}1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0\end{bmatrix} =\begin{bmatrix}\textbf{T}_\textbf{x} \\ \textbf{T}_\textbf{y} \\ \textbf{T}_\textbf{T}\end{bmatrix} \] \[\textbf{S} \textbf{R} \textbf{T} =\begin{bmatrix}\textbf{S}_\textbf{x} \\ \textbf{S}_\textbf{y} \\ \textbf{S}_\textbf{T}\end{bmatrix} \begin{bmatrix}\textbf{R}_\textbf{x} \\ \textbf{R}_\textbf{y} \\ \textbf{R}_\textbf{T}\end{bmatrix} \begin{bmatrix}\textbf{T}_\textbf{x} \\ \textbf{T}_\textbf{y} \\ \textbf{T}_\textbf{T}\end{bmatrix} \] \[ =\underline{\underline{ \begin{bmatrix} 1.000 & 0.000 & 0.0 \\ 0.000 & 1.000 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix}}} \]